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STUDIES OF THE ELECTROMAGNETIC CHARACTERISTICS 

OF MOVING IONIZED GASES 

The Project Scientist for this task is Dr.  Manlio Abele. 

The investigations of the microscopic and macroscopic 

properties in a weakly ionized gas reported in Chapters II and III 

of this summary report were carried out under the direction of 

Professor» Piero Caldirola and Luigi Napolitano,   respectively, 

and under the general direction of Prof.   Piero Caldirola. 

The studies of the propagation of electromagnetic waves 

in the shock tube,   reported in Chapter IV,   were carried out by 

Drs.  Frank Lane and Gino Moretti. 

The experimental work reported in Chapter V has been 

carried out under the direct supervision of Dr. Abele assisted by 

Messrs.  Roger Tomboulian and Myron Wecker. 
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CHAPTER I • 

INTRODUCTION 

This report   contains     preliminary information on the theoretical analysis 

of the electromagnetic properties of a non-uniform ionized gas and the des- 

cription of the facility to be used for the experimental investigation of the 

propagation of an electromagnetic wave in the non-uniform gas. 

It is well known that in a first order approximation,   the propagation 

of an electromagnetic wave may be analyzed with a simplified scheme in 

which the local properties of the ionized gas are given by the plasma frequency 

and the constant collision frequency.    Even in this  case the solution of two- 

or three-dimensional propagation problems may present tremendous mathe- 

matical difficulties.    On the other hand,   in a general case for a non-uniform 

gas,   the effort required to solve these problems is not justified due tu the 

oversimplified scheme of the electrical properties of the gas.     When the 

change of the macroscopic thcrmodynamic properties of the gas becomes 

important in a length of the same order of magnitude of a wa\ e length of the 

electromagnetic field,   it becomes nötessary to analyze the possible effects 

of additional phenomena such as the transport process,   the anisotropic be- 

havior of the electrical properties,   the electrical polarization of the medium, 

etc.    Furthermore,   the coupling between transverse    oscillations and coherent 

longitudinal   e 1 e c t r o n oscillations may become a significant factor leading 

to a substantial increase of the dissipation of electromagnetic energy in 
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I thermal energy in the ionized gas.    If the relative importance of these phen- 
■ 

omena could be properly evaluated from the theoretical standpoint, then it 

I 
I would be possible to define the set of parameters which govern the behavior 

of an ionized gas for each particular case.    The major difficulty of a theo- 

retical approach is due to the fact that it requires detailed information 
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about the microscopic processes,  which at the present time is rather in- 

complete,  particularly for the case of weakly ionized air as encountered in 

fl ight conditions. 

Thus a systematic experimental investigation becomes of primary im- 

portance in order to obtain direct information about the electromagnetic 

properties and it must be complemented by a theoretical analysis of the 

microscopic processes which occur   in a non-uniform gas.    Furthermore, 

a theoretical research has to be developed  in order to establish the correla- 

tions between the experimental data and the results of the theoretical analysis 

of the physical properties uf the gas. 

The experimental investigation of the local electromagnetic properties 

of a non-uniform gas by means of the study of the propagation of an electro- 

magnetic wave involves a huge amount of difficulties.    An overall measurement 

of the total phase shift and attenuation of the wave across the gas in a given 

direction would not provide enough information about the local properties, 

j On the other hand,   a direct measurement of the distribution of electromag- 

netic field must be obtained without perturbing both the flow field and the 

electromagnetic wave.    Consequently,   the geometry of the channel where 
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the channel itself.    In the case of 

the propagation is analyzed, must be such that the necessary information 

may be obtained from a set of measurements performed at the boundary of 

a one-dimensional non-uniform flow,   these 

considerations suggest the advantage of using the channel containing the 

ionized gas as an element of wave guide where certain basic conditions about 

the distribution of the electromagftetic field may be predicted provided that 

the proper range of frequencies is selected for the electromagnetic field. 

By using a shock tube to produce the ionized gas,  the most simple experi- 

mental arrangement corresponds to the propagation of the electromagnetic 

wave in a section of the driven pa^t of the shock tube itself.    A non-uniform 

distribution of the electrical properties of the gas may be achieved by es- 

tablishing a temperature gradient in the driven section,   as discussed in 

detail in Chapter V of this report.    If the flow were uniform in a cross-section 

of the wave guide,   with a suitable distribution of microwave detectors located 

at the wall of the wave guide,   we would obtain complete information about 

the properties of propagation of the electromagnetic field.    In turn,   this in- 

formation coupled with the theory of propagation in a wave guide leads to the 

correlation of the measured quantities with the theoretical values of the phy- 

sical properties of the oas.    Of particular interest is the correlation between 

experimental and theoretical values when the gradient of electron density is 

chosen in such a way that the electromagnetic wave cannot propagate beyond 

a given cross-section of the ionized gas.    The position of this critical cross- 

section of the ionized gas and the amount of reflection of the electromagnetic 
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|.   I wave at this section should be very sensitive to a small change in the electrical 

• parameters of the gas.    Thus we may expect the maximum detectable effect 

of a departure of the actual physical properties from the theoretical values. 

This critical cross-section moves along the shock tube with the velocity of 

the ionized gas.    A microwave detector located in the region of propagation 

before the arrival of the critical cross-section behaves like the detector of 

a standard   standing wave ratio meter.    After the instant of time at which the 

| critical cross-section reaches the position of the detector,   the detector will 

indicate the damping of the electromagnetic field in the region of total atten- 

' uation. 

The position of the initial cross-section may be controlled with an 

externally applied constant magnetic field.    With an axial dxstribution of mag- 

netic field which should not perturb the gross properties of the flow field,   we 

introduce an additional parameter that may be extremely helpful in obtaining 

the information about the new properties of propagation which are created in 

the wave guide.    If the mi croscopic properties of the.collision processes in 

the gas are not strongly affected by the external magnetic field,   the anisotropic 

electrical properties of the ionized gas may be predicted on the basis of the 

solution of the equations which govern the macroscopic motion of the electrons. 

A careful analysis of this particular problem from both the microscopic and 

| macroscopic point of view is one of the cbjectives of the theoretical investi- 

gation outlined in this report. ' 

I 
I 



I 

I 

I 
I 
I 
I 
I 

The assumption of a one-dimensional flow is verified in the »hock tub« 

only in a first order approximation.    Actually,  the boundary layer behind the 

shock wave introduces a non-uniform distribution of the electrical propertie« 

in a cross-section of the shock tube.    The propagation made chosen   for the 

wave guide is the fundamental T. E.   mode,  and the frequency of the electro- 

magnetic wave is such that this is the only mode that can be propagated. 

For these conditions the thickness of the boundary layer where a strong change 

of the electrical properties may be expected,   is a smaU fraction of the wave 

length.    Consequently,  the non-uniform transverse, distribution of the flow 

field will appear as an average effect on the axial propagation of the electro- 

magnetic wave.    This effect must be analyzed in order to establish to what 

extent it may be neglected.    A preliminary calculation is presented in this 

report with a simplified scheme which should give the order of magnitude 

of the effect to be expected in the experimental conditions of the test section 

of the shock tube.    It is necessary to point out that the boundary layer may 

introduce additional difficulties corresponding to polarization effect« and dif- 

fusion processes due to the strong transverse   gradients,   and a detailed in- 

vestigation of these effects may become necessary during the development of 

this research. 

On the basis of the aforementioned considerations and the particular 

experimental technique to be used in the measurement of the electrical prop- 

erties of the non-uniform flow,  the theoretical research program is divided 

in two main parts.    One part is devoted to the analysis of the microscopic 

5 



phenomena and the calculations of the parameters which define the physical 

macroscopic   properties of the non-uniform gas.    As shown in Chapter II, 

the statistical approach assumes a weakly ionized gas in such a way that the 

distribution function for the molecular species is independent of the distribu- 

tion function for the electron gas.    Thus the electric properties of the gas 

are evaluated in terms of the thermodynamic properties of the non-uniform 

flow field.    This assumption is certainly valid in the particular condition of 

the gas in the shock tube. 

In the other part,   the theoretical analysis of the propagation inside the 

wave guide will be developed with different model distributions of the macro- 

scopic properties of the ionized gas in order to interpret the experimental 

results and to establish the correlations between the measured electrical 

properties and the corresponding theoretical values. 

I 
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CHAPTER II 

ANALYSIS OF THE MICROSCOPIC PROPERTIES IN A WEAKLY IONIZED GAS 

I.      INTRODUCTION 

The main object of the work presented in this section is to study the effects 

of inhomogeneities in a plasma caused,   for instance,   by electric fields, magnetic 

fields and temperature gradients. 

Let us,  at lirst,   consider a plasma model without boundary conditions,  anc 

assume that the electronic density is much smaller than the molecular density, 

(Lorentz gas.)    In doing so,   we may overlook in our model the presence of 

the ions.    Furthermore,   if we indicate with   f(P,   v,   t) and F{P,   V,   t),   respec- 

tively,   the electronic and molecular distribution functions,  we may overlook 

in the corresponding system of two coupled Boltzmann equations: 

01 -  Jee (f) -   Jem(f) 

DF=  J       (F)+ J      (F) mnv   '       mi *   ' 

the two collision operators Jee (with respect to Jen ) and Jine (with respect to 

J        ).      A  list of symbols is given at the v.wd ol this cuapU r, 

.Assuming then,   the following system for the temporal behavior of  i and F, 

Di =  Jem(f) (1.1) 

DF= Jrnrn(F). (i..:) 

we may note that; 

a.    From the equation (1.-)    the temporal behavior of the molecules is entirely 

independent oi tn«.- presence of electrons,   while the electron gas depends upon 

the presence of molecules,   through the colliteion term J,.nT« 



b.    The temporal behavior of the electron gas,   given b\   equation (1,1) 

is affected by the molecuLir gus,   ae we snail see  later,   only through the 

following phenomcnological parameters:     molecular density,   mean velocity, 

and mean square velocity. 

As a result,   il  is not necessary in solving equation (1,1) to integrate the 

Boltzmann equation (1.-): 

DF =  Jmm(F)( 

because we only need the knowledge of the mentioned phenomenological parameters, 

-•     ANALYSIS OF THE EQUATION (1. 1) 

We  shall begin by expanding the eU ctronic distribution function £(P, v,t) in 

spherical harmonics,   writing: 

f (P. v,t) 

D 

I 
1= o rntP.-'^Cjm4 ^jm <P'v''> Sjm U.i) 

(o < m<j ) 

where: 

Cjm=   ■J«jm(^ cos m* 

Sjm=   vJ   ©jj«)  »in mo , 

W     (9)   being the associated Legendre fuiidions: jm^   ' ° 

9.    (9) =  sinmfl   F(m) (cos %). jmN   ' j       v ' 

We may write   th«' expansion (£,-1) in the form: 

f(v)   -   fo(V)  4-  -i-.i,   (V)   fX(jt)  . {1,1) 

where f0 represents the isotropic part of the distribution function  f,   f.   is the 

coefficient of the first anisotropy and ^ is simply the remaining part of 

expansion (Z. I), 



i 

I 

Introducing (1. I)  into the Boltzmann equation (U I),   we obtain a hiorarchy 

of equations,   which is easily obtained provided we know tAe result of the 

application of the  linear collision operator J over each term of the expansion (2. I), 

To this end,   we may note that the operator J,   in an approximation for 

which one has simply   m/M =0 (perfect Lorentz gas),   possesses the following 

properties,   for each isotropic function a(.): 

J (a)-   0 

J(Q Cjm) =  -   Vj  a Cjm (Z.3) 

J (a Sjm) -   -    Vja Sjm 

In the imperfect Lorentz gas scheme,   we shall have: 

J(a) -  Oxl-Sr) 
M 

J(aCJm) =   - v.   a Cjm   jl.   O, (-g-) (^.4) 

J (a S     )   =   - '       jm' ')  *Sjm   [l + ü3   (-S-)j 

where we have used the Landau symbol   Oix),   meaning a quantity which is 

simply of the order of x. 

The quantity 01 (~)   has been calculated by others (Kef.  I) under the 
M 

hypothesis of a Maxwcllian molecular distribution F,   obtaining: 

J(a) _ m     I     a 
" 

m     I     a j / 
M   v2 av ' \ 

a + 
kT     'da 
mv    8v 

1 

(^•S) 

On the other hand,   we have proceeded to the evaluation of the quantity 

Oi(-Sr) keeping an entirely arbitrary {and hence generally anisotropic) molecular 

distribution.    The result of our calculation is given by: 

■ 

■ 

■ 



j(a) = J^_£_ J \ (v) + b(0 v • v +  c{v) vv : vy L , 
V        r)V ' 1 U.6) 

when;: 
. i  \         m             j                  j   V     9 a A(v)    =       y,   v1   a   t  vj v  

M j       ü v 

13(0   -    i/j   v a 

L        .8a 
c(v)   =    (vi._Vi)_7 

(2.7) 

-»   ^ (v i 7 vi)  v " - -T—  
v 

6    8 v 

We havt followed Chapman and Cowling's notatiOp,   in writing: 

;. = l 

vvherr  vj   ^nd v-.   '■^'■■' the first two relaxation frequencies   (Ref.   1): 

v^v) 
r 

=   - Ti Nv   1    sin 9 I -  P,   (cos 9) a(9, v) d« 

(-.8) 

v/2(v)   = =   1 irNv    f     sin 9 
J L 

l - F2   (cos 9)   0 (9, v) d9   , 

0 (^tlv-xl)    being thi   differential cross section for electron-molecule 

collision,   in a frame of reference fixed with one   of the two particles. 

The determination of   J (oCjm ),    J ( aSjm) has been done disregarding 

the 02 ,   O3   terms.      (We will give a brief account of the method followed in 

the derivation of formula U.fe)    later in this chapterj   Taking into account 

v 
that f-. is an Isotropie function and —— • f,     is simply a linear combination 

with Isotropie coefficients of C 10,   Cu ,   Su ,   we are now able to calculate 

j(f  ),   J (_=_ . f   ) .     If we perform a furth« r approximation* forgetting the'X.('il) 

* As is usual in this kind of reasoning,   we may evaluate "a posteriori" the 
usefulness of this approximation,   by calculating explicitly the difference between 
the results obtained and those based on the successive approximation,   or 
"a priori" we may introduce  some plausible arguments,   like those used by 
Davydov (Ref.   i) and Gurevitch (Ref,   4). 
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in the (-.-),   we at Last arrive at the foLlowing; 

Df = j{i) =  -L   -t .A  ^ ii i-l    '    Ci*. :  VV 
v    9v   L 

•- v. (-f-'Ii)   •      U.9 

where   .\(),   B(v) and C(v) are given by (-.7). 

Finally,   by means of the orthoyonality properties of the spherical harmonics 

functions on the unity spher«', we obtain the lolUnving system: 

-^.+T divp f1+-!2_ -L (- ,.,) = .- ii_'VlV3/: f±!f ^)1 

(-10) 

ai, J-1    ^ ,     f        %   9Io 

in tiu' unknown functions fü,  i 1   . ♦ 

3.      DISCUSSION OF THE COLLISION TERM 

The collision term: 

Jia) *  I (a1 F '- aF)   g O^e.g) dfl dV    , - V (3.1) 

has been evaluated by noting that in each < lectron-tnolecule collision the 

variation of the modulus v of electron veloi ity v ,   is given by: 

r   i/' 
^ = 0i(ir)/2! ^'^ 

As a consequence,   the integral operator (i. 1) can be put in a differential 

form following the same technique which is used in the transformation of the 

Boltzmann elastic collision operator into the Fokker-Planck form (Refs.   5 andb). 

*   As will be shown later,   the main object of our current research consists in 
the evaluation of stationary or   asymptotic solutions of the system (Z. 10). 
Simpler systems,  in which we may give evidence to particular aspects of 
inhomogeneities,  will be considered. 

1 1 
. 



Let us introduce a suitable (out largely arbitrary) isotropic function | (v); 

according to a general well known rul^: 

J 
J(a)$(   ) dv goF0r(«,g) dL2 dV   dv (3.3) |(v') -  |{v) 

Furthermore,   retaining only terms  oi" the order of   m/M,   we have,   according 

to (i.t): 

|(v.).$(v)=(V.v)-^ + i-(v..v)2    f^      . (3,4) 
1 d v £ 9v- 

Insertinu (3.4) into ( J, .i) und  integrating by parts,   we found: 

V"      ()V 
- v- |x a  +   —    —    (   l\i) (3.5) 

w here 

.(v)tejo   (8,g)   gF (v*- v) dQdV 

»Jff(e.g) g 
(3.6) 

• 

\(v>.= /    f-     i  gF (v '- v)     dOdY 

In a way consistent with the approximations used,   the two preceding functions 

(A  and  \ are evaluated at the first order in the quantity m/M. 

The rathc-r lengthy calculations are omitted here.    Assuming a quite 

arbitrary molecular distribution function F(V) and inserting the final expressions 

for ,1 and   \ into   (3.5),   we obtain the formula (.i.6).    We note explicitly that, 

in the hypothesis that the molecular distribution function F be isotropic, 

formula (Z.b) reduces to (Z.5) which has been calculated by Chapman and 

Cowling (Ref.   Z). 

' 

■ 
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4.     CONCLUDING REMARKS 

A preliminary investigation of the possibilities of solving the system 

(Z. 10) is now in progress,and in this connection,   we intend,   in the future, 

to develop the following points:    a.    To first integrate the system (1. 10) for 

particular cases and then,   if possible,   in general form.    This will be carried 

out in order to evaluate the electromagnetic parameters of the plasma (taking 

inhomogeneities into account) within the limits of the approximation usefl 

1 through the knowledge of the electronic distribution function;    b.    To evaluate 

"a posteriori" the usefulness of the approximations used; and c.  To work out 

some possible extensions of the theory, 

I a.    Being aware of the note-worthy analytical difficulties of our system 

(Z. 10),   we intend,   as stated before,   to analyze it in more  simple cases,   at 

least as a first step.    For instance,   if we take     E =0,   1-1=0,   V  =0     and we 

consider a stationary stati ,   the  system (1. 10)  reduces to one equation only 

in the isotropic function f0,   which probably can be integrated in closed form. 

In this case,   with the further hypothesis,   T  = const. ,   such an equation is 

| separable; stating 

f0(P,v)  =   R(P)  U{v) , 

we can write the two following equations: 

IU" WV + iU il^V + /mi ^ +   3m   +   ****,)    U -  0 \$       v     TfJV       l^kT   X        kT        ikTd,2/     U      0 
<|) kT        3 kT (j)2 

V*R .  -L gradpN . gradpR —KM*  R =  0 

where 

tvl (Pv) =N(P)<(,{v)   . £,=-J_gradpf0. 
N<J) 

and   Kis an arbitrary constant corresponding to the separation of variables. 

■ 

■ 
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We intend,  by solving these equations,   to analyze the inliuence of the 

sole density gradient on the electromagnetic properties of the plasma.    As far 

as the attack to the  system (~. 10) in its more general form is concerned,   or, 

at Last,   with the only hypothesis of tinie-iudependence,   v.e may introduce; 

i.    some possible reductions of the system to special forms which 

one can hope to integrate in closed form, 

ii.   we may  look for the evaluation of eigenfunctions and eigenvalues 

of the operator; 

J(a) 
M      \2   j v 

.    /           MV7    da v   yi    f a +     

L 5 rnv      <Jv 

to integrate the system by means of expansion processes provided that the 

existence of a closed spectrum for J can be proven. 

iii.   a typical iterative process,   on expanding £*,   f j ,   formally,   in 

series of some convenient parameters, 

iv.    finally,   we may integrate the system numerically,   at least in the 

simple cases mentioned above. 

b.    We intend also,   to analyae as accurately as possible the validity of the 

approximations made in the spherical harmonic expansion used for the electronic 

distribution.    To this end,   we  will eventually try to consider also the effect of 

the second order anisotropy.    Furthermore,   within the limits of elastic collisions, 

we will analyze more precisely,   the particular kind of electron-molecule inter- 

action which affects the form of functions   vi{v) and Vi(v) of Section Z, 

. 

14 
^■jv* 



:.    As regards the extension of the theory,   we may taki; into account 

more than one kind of sphc.ricuL molecule.    The inert: useful extension,   however, 

concerns the possibility of taking into account also anelastic collision processes 

(excitation and Ionisation) and,   at 'east partially,   and in the limit of the 

Lorentzian gas model,   tue remaü ing complex electron-molecule interaction 

phenomena,   w li :h are   present i i the plasma under various physical conditions 

(recombination,   molecular atta ;hment,   et< .). 
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LIST OF .SYMBOLS - CHAPTER II 

c =   liuht velocity in vacuum 

k sBoltzmann's constant 

in =r Lect ron ma s s 

q(, =   electron charge 

1, F - distribution functions 

v =   e K-ft run veloi it y 

v -  modulus of electron velocity   (v 

\1 =   moU'Cular marfs 

!■-!> 

T 

V 

V 

V 

v- 

E 

H 

Df 

=  molecular temperature 

- modulus of the iiioli-cular vi locit^  (V V|  ) 

=  molecular velocity 

=   molecular mean velocity 

=   molecular mean squari' velocity 

=   electric li eld 

- magnetic   field 

=   Boltzmann differential operator for electrons; 

Df = 
dt 

v , grad    1 
clo 
in 

1 
v A H )«   gradv   f 

DF   = Boltzmann differential operator for molecules: 

dF X 
DF = -—   •  V •  grad^ F 

t P M 
gradv F 

X    =   external forces ou molecule 
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Jee(f)    =   Boltzmann collision operator for eli-ctron-t-k-ctron-encounters 

Jee(£)   =     \h<\hd(   Iv'- v|   (f'f,1  - l   fj )   dv, 

•^niin^f) =   Boltzmann collision opcreitors for moL cuK-rnoleculi.1 fiicountiTs 

Jr.un^')  =   Jbdbd« |V'   •   v|    (F* F*,      F F; ) <1V , 

Jem'^)   ~  Boltzmann collision operator for i-lii t.ron-mol<'CuU' L-ncountcrs 
r 

Jem(f)   =  Jbdbdtl v - v| (l'F1   -  iF ) dV 

J      ,(F)  -    Boltzm.mn collision operator lor m 

r 
Jnie(F) =   Jbdbd« |V     vl (ft '     n ) dv   . 

ili- -i- Uct ron i-ncount' rs 

17 
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CHAPTER III 

MACROSCOPIC PROPERTIES 

1. INTRODUCTION 

For this chapter the preliminary   results of the study of the electro- 

magnetic properties of a nonuniform,   tnacroscopically neutral plasma are 

reported. 

The line of approach is a macroscopic one,   based on the thermodynamics 

of irreversible processes,    A three-fluid model of the plasma is assumed and, 

in this first stage,   the plasma is considered to be at rest in a suitable reference 

frame,   the components are  in mutual thermal equilibrium and imposed magnetic 

fields are absent.    The nonuniformities are those connected with the presence 

of gradients of state parameters  such as temperature,   pressure and concentra- 

tions. 

The presence of thes.- gradients induces a polarization in the medium 

even in the absence of external electric  fields.    It will be shown that,   in the 

stationary state,   the induced polarization depends on only two independent gradients, 

which,   for convenience,   are taken to be those of the temperature and the pressure. 

An expression for the induced polarization is derived,   which is valid for a 

most general case and winch is later simplified to the case of the imperfect 

Lorentz gas (i.e.   weakly ionized plasma for which the mass ratio   |  between the 

negative charge carriers and neutral molecules is much smaller than one)    and the 

perfect Lorentz gas ( i.e.   weakly ionized plasma with £ =      0)  , 

18 



The phenomenological coefficients relating the induced polarization 

to the temperature and pressure gradients are first expressed in terms of 

thermodynamic properties of the plasma.    It is then shown how these coef- 

ficients can be expressed only in terms of simple binary diffusion coefficients 

and thermal diffusion coefficients pertinent to the plasma  constituents.    This 

last step furnishes the linking element between the present macroscopic approach 

and the more refined,   but usually less general,   statistical approach.    Indeed 

it indicates how the subject phenomenological coefficients can be rigorously 

evaluated,  in term«  of the "microscopic" characteristics of the plasma consti- 

tuents,   once the statistical approach has gone far enough to provide workable 

results.    In the meantime,   however,  the fact that one needs to   know only the 

binary transport coefficients provides a possibility of readily performing 

order of magnitude analysis by  utilizing the available experimental data on 

electron-ions,   electron-molecules and ion-molecules collisions. 

The results of the present stage of the analysis already open up two 

possible ways of utilization,   both of noticeable interest. 

In the first place,   as mentioned before,   several order-of-magnitude 

comparative analyses can be carried out.    For instance,   one can evaluate the 

relative importance of the different    inhomogeneities with respect to the 

polarizations they are able to induce (e.g.,     is a temperature or a pressure 

gradient more important to this effect?)     Also,   one can compare the polari- 

zation induced by the  inhomogeneities with that induced by an external  electric 

i 
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r 
field and thus determine the ranges within which the former one can be 

neglected and the medium treated as homogeneous. 

The second application of equal practical interest follows from the 

consideration of the electromagnetic field which is created by the induced 

polarization (which,   in principle,  can be computed by evaluating the Hertz 

potential whos« B|*urco is the induced polar^ation) .     When we induce into the 

plasma a polarization by means of controlled suitable inhomogeneities,   part 

of the energy furnished to maintain the gradients is spent to "create" the 

induced electromagnetic field.    This is nothing but the underlying idea of 

energy conversion systems and the present results can be used to investigate 

both the feasibility and efficiency of a number of such systems. 

The steps of the analysis herein reported are as follows: 

In Section Z   the irreversible thermodynamic description of the 

system is performed.    The extensive and intensive state parameters and 

the pertinent mass and energy fluxes for a mixture of three fluids,   of which 

two have negative and positive charges,   are defined.     The  "kinetic" relations 

between fluxes and generalized forces are established and,   through suitable 

use of the basic theorems of the thermodynamics of irreversible processes, 

the general expression for the mass fluxes in terms of pressure,   temperature, 

the electric potential (6   )    gradients and thermodynamic properties of the 

plasma is arrived at. 

I 
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In Section 3  the general expression tor the polarization 

is obtained,  for a macroscopically neutral plasma,   in the form: 

grad (t>   =     a j   grad T +     n j grad p 

where the tij are phenomenological   coefficients.    Their expression in terms 

of the thermodynamic properties of the plasma is also derived in this section, 

both for the general cnse and for the simplified case of the Lorentz gas. 

In the last section,   Section 4,   the problem of relating the 

coefficients a , to binary transport coeficient is considered.    By suitable 

transformation of fluxes and affinities it is shown how they can be expressed 

in terms of three binary diffusion coefficients  D;j .     Dj,,   D 3   and two thermal 

,..-   . r       T 
diltusion coefficients,   D;      ,   FK     ,   which reter to the plasma constituents. 

General expressions arc presented but no attempt is yet    made to either 

simplify them or evaluate their comparative order of magnitude. 

TIK- concluding  section briefly describes the lines along which 

the  research will be furthered 
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I L.        IRREVERSIBLE THERMODYNAMICS DESCRIPTION OF THE MEDIUM 

Considering a plasma formed by electrons ( subscript   i ) ,  ions ( 2)   and 

neutral molecules (s)    in neutral thermal equilibrium (i.e.  T,   =   T2 =   T3 =   T) 

one can write the mass fluxes for the three species and the energy flux as a 

linear combination of generalized forces ( affinities) through phenomenological 

coefficients.    The plasma is assumed to be at rest in  a suitable reference frame) 

As a consequence of the mass conservation,   only two mass fluxes are 

independent so that,   by accounting for the Onsager's   principle of the symmetry 

of the phenomenological coefficients { L^.  =   Lj.) ;   one can write: 

Jo=   U   OiJi +      Loo -Z-MoOi   1  xo 
\-\ \ I« 1 

2 

i =   Z_ ^ik  (xk - x, +  Qk x0) 
k : 1 » I 

(2.1) 

(   i =   1,2) 

In these relations J     is the flux of energy,   J-'s are the mass fluxes,   and the   X. s 

are the generalized forces: 

X. -    7p       grad T 
0 

X,  =  -•, grad *- T gradf^-j 

Xa =  - e2 grad is>  - T grad f-^") 

Xj -  -T grad (^ 

(2.2) 

IL 



with |i.     =     specific chemical potential for the i1    species,  e. the electric 

charge per unit mass and   (fc the electric potential. 

The quantities Q-    (   i   =    I ■ Z)   are the   boats of transfer,   defined 

in terms of the coefficients hi. as: 
J 

Qi 
^lO ^U   '   ^l i^ 20 

L, , L i i J-zi 1. i i 

(2. 5) 

L, ,   L,0 -  L, ,, L i o ^l 

Li i  L22   - L '1 1 ^zz 1 1 

I 

I 

I 

I 

It is convenient to eliminate from Equations ( Z. 1)   the explicit appearance of 

the gradients of the chemical potentials  JJL^ in favor of the pressure gradient. 

This can be done by considering the |j.,   =   |JL^(T,   p,   c^  ,   where Cj is the mass 

concentration of the i      species,   and by taking into due account the definition 

of Gibb's potential (Reference Z)    and the Maxwell's relations (Reference Z) , 

The result is: 
Z 

j'= £ ^ ■ (vj  - vk)    grad p   - 

j=  1 
dc- 

grad c 

p.T,ck 

J 

(  Qi,- hl    +   M      T    8rad 
'k       k 

1 T > - e: sjr 

(2.4) 

i grad   <)) 

( 1,2) 
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where v- and h- are the specific volume and enthalpy of the i      component and 

where the subscripts indicate the variables to be kept constant in the differen- 

tiation process. 

Equations ( 1. 4) are the equations needed to determine the polarization 

induced by the Lnhomogeneitiea in the plasma, as detailed in the next section. 

1. GENERAL EXPRESSIONS FOR THE POLARIZATION 

We are concerned with the determination of the polarization (^rad   (b) 

induced in the plasma by imposed gradients.     We deal,  therefore,   with a 

stationary state   (Reference 1)   wherein all the mass fluxes will be zero while 

the energy flux   J0 is different from zero. 

Equations (2.4)    equaled to zero,   plus the  statements of mass conserva- 

tion and macroscopic electrical neutrality provide a set of four equations for 

the six quantities grad c. ( i =    1, ^, ;>)  ,   grad T,   grad p and grad  A   .    It follows 

that any of these quantities can be expressed as functions of two others. 

By choosinjj the two independent gradients to be the pressure and tempera- 

ture gradients,   one thus obtains the following general expression for the polari- 

zation: 

grad <J) = q .   grad T   +   n2 grad p. (5.1) 

The coefficients Qj   and n ,> are herein referred to as coefficients of polarizability. 

They are a measure of the polarization induced by the presence of gradients of 

macroscopic properties of the plasma and are expressed in terms of their 

thermodynamic properties by: 
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Ve; e, / Vi    \ e, e2 ) 

eie2 

(3.2) 

m, 
2 

bz f)+- r^ -1) 
;,  e2 

/a^j- 

\ e, t 
EL.      ±1 

2 
e,  / 

with: 

ai   =     ö ( Hi - H'j)    /   8c, 

bi   =     d (V-i - V-i)    / 9c 

m
i
=     v, - vj (i=   1.2) 

(3.3) 

q.    =      ^     ( Oi  - h1 +   h,  ) 

It appears that the a^   b^   fni are completely determined once the pertinent 

"state equations" (Reference 2)   of the constituents are given.    The quantities 

q. depend,   in addition,   upon the phenomenological coefficients Lj. through the 

heats of transfer Q.. 

Thus,  to make any use of Equation (3.2)   one must make some assumptions 

as to the state equations of the plasma constituents and must determine,  either 

« 
experimentally or by means of statistical mechanics,  the phenomenological 

coefficients L-  . 
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The expressions for H,  ^ and Sj are herein derived on the assumption 

that the plasma constituents are perfect gases.    The quantities q. wül be dealt 

with in the next section. 

If one makes the perfect gas assumption,  the following relations 

hold ( Reference 2) ; 

»iV,^RT  [jMT)    t    '"(Pti-^-) 

m 
v. i _i    ^L 

m pc- 
(3.4) 

h.    =     h. i io f1 
+ c JTn      Pi 

dT 

wherein   £   (T)   I. « arbitrary function of the temperature, mj   i. the molar 

mass of the ith component,   m i. the molar mass of the mixture.   ho a reference tc 

specific enthalpy,   and R the molar gas constant. 

V/ith these expressions one has: 

1 
1 
I 
I 

a,   "     RT 
c1m1        m,       \   rn m,y c3,n} mj       \^ in, m,  / 

b,   =     a2 =     RT ■U 
L 

m,,      |   m 
1 1 

•*■—     +    C3iri3 m. 

hz =     RT ^  L_ ._i_     p m    _    ml 1 
I    c2m2      ma      lvn2    '    m,   |    +C3rn3     + 

m. 

m. 

RT m, m. 
pm     y   Cj 

RT 
pm 

m, rtu 

Zb 

m 
m. 

m 

m. 

J 

JJ 
( }.5) 

3 i_m2 
m3jr 

J 
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In the case of an imperfect Lorentz    gas ( i.e. —i- < <:    1; N, /N, < < 1; 
ITlj 3 

N^/Nj < <  1)   these formulae are greatly simplified and one obtains: 

a,             NRT m 
—i-   ^j          — 
el       — € l ni; 

5.6) 

b, NRT       m 

-^ RT 
m;   =  

pm        ci 

where c ,   and € ;, are the molar electric charges. 

The expressions for the coefficients  a,   and n , are found by substituting 

Equations ( }.5)   into Equations ( 5.2). 

Another quantity of practical interest is the coefficient dj  =    a^/a,   ,   giving 
i 

a measure of the  relative importance of pressure and temperature gradients with 

respect to the induction of polarization. 

The general expression for  ai is: 

q,    +   q,« 
( 3.7) 

w lie re 

a1 b1 

_£l ^i  {3.8) 
bj a, 

e? e, 
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la the case of imperfect Lorentz's gas,   Equation ( i.7)   reduces to: 

RT 
pm 

r m,     t ,     m. 
C. €, IT.! 1 ,     tn,j (3.9) 

Nm   fq, -\ ■ Y^ 
€ ?mj ^hj 

\ 
IJV] i ,       c2m, ( 3.10) 

The formulae so far developed are all that one can do without specifying the 

nature of the phenornenolo^ical coefficients Lj .     Any order of magnitude analysis 

can be furthered only after having found suitable expressions for these coefficients, 

or,   what amounts to the same,  for the quantities q^. 

This is considered in the next section,   where it will be shown how the 

L;   's can all be expressed in terms of binary transport coefficients. 
J 

4. EXPRESSIONS OF THE PERTINENT PHCNOMENOLOGICAL COEFFICIENTS 

IN TERMS OF BINARY TRANSPORT COEFFICIENT 

To express the coefficients qi in terms of binar y t ransport coefficients the 

following consideration is essential. 

In the subject case we have two independent mass fluxes and one energy 

flux.    The number of independent phenomenological coefficients is therefore, 

accounting for the three Onsager's relations between the  six c ross-coeff ic ients, 

six.    It follows that the behavior of the system is completely characterized   by 

only six    independent coefficients.     A set of six independent coefficients is that 

of the three binary diffusion coefficients  D, z ,   D, j,   D^ { 1. e.  the coefficients of 

diffusion for electrons  -ions,   electrons-molecules ,   and ions-molecules mixtures) 

T T 
plus the two binary thermal diffusion coefficients D,    ,   D..   (i.e.  the coefficients 
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of thermal transport due to diffusion of the electron-gas and the ion-gas into 

the neutral gas,   respectively)   and the heat conduction coefficient. 

It is then natural to think that a suitable linear transformation of fluxes 

and forces will make it possible to express everything in terms of the above 

binary transport coefficients. 

This is indeed so.    In fact,   by defining the new fluxes Jk   and forces ^ 

through the relations: 

J.'   -    J1 (i =   1,2.3) 

: 

I 

i 

i 

I 

I 

l 

I 

I 

j'     =     J     - h. Jj   - h^J> - h, J 
o 

(4.1: 

x; = xi 4 h^, 

K - xo 
We find ( see  Reference  2)    the following relations between the coefficients 

L-       and the new coefficients   L^,  . 

Hi  -   Lij       ^•^- 1'2'3) 

Loo  -        oo ( 4_i) 

L1O   = -Ln   (h,   - h,)    - L, , (hi-hj)    +   L, 0 

LL,    =     -L2,   (h.-h,)    -  L22{h2 - h3)    -   L,o 

' These new coefficients  L^    are just those used in Reference   J and it is 

therein shown how they are  related to the  binary diffusion coefficients  D^. ,   to 

the thermal diffusion coefficients  D-    ( i =    1,2)   and to the thermal conductivity 

coefficient h'. 
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By performing the necessary substitutions,  the ultimate goal of 

expressing the q^'s   in terms of binary transport coefficients is thus achieved, 

and one obtains: 

AT   \  nzn,  n 1 "i "M m,  m, nj m,   D;j  D23  +   m,   ( p= n2mj)   D! , D>j t 

-|   r    T Tn T        . r , 
- m, (p - n, m1 )    D,, D,,       D,   +   D2       +   ( Ö!   )   n"n,njmzmj     n, m, D2l 03, 

-m,  (p-njmj)    Da Dj,  - m2(p  - n2ni2)    D^, D2i   j> 

and J 

1 

(4. J) 

-r^T \   n rij n,m, m2        nj m3   Dj 3 D^  - ni2 ( p   - n2m2)    D; 2 D^,     + 

1 r T      T 
-m, (p   - n, m,   )    D, ,, D, , j  ', D,     +   D2 

T    r 
o,) n  n, 113 rrij rrij 

J 

n2m   D^Dj^    -mj(p-njm,)    D, 3 Dj,-m, ( p-nj m, )   D, 3 D, 2 i 

where A is given by: 

p-p   < n,   D23  +   niD^  +   nj D, 2) 

-mj(p-njmj)   D, j Dj2 - m,   (p-rijm,)     D, , D, 2       n
2n, n2n 

A = 

-1     r 
•    \   n^ n. n 1 "3 mi rn3 

nimi  D! aD32     + 

. 

1  "'2 

njiuj D, j Dj - m2(p- n.m,)     D, ,Da - m, ( p- n, m, )   Dj , Dj j 

n2m2   Di i Dj2-'"j ( p-'h nij)    D, j 0,2-in, ( p-n, m, ) n  tij n 3 tri] 1113 

'     0,3 0,3 n   n2 ni m, 1TI3 n, m," D,,  D3,   -in, (p  -1131x13)  0^03,   + 

-m2(p - n2m2)   D^ D21  |   f   n rij n2m1 m2 n3ni3 DuD^  -   m2(p-n2m2) 

^0 
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i   2 r     - ■ Dj2Da - mj ( p - n, m, )  Dj 3 D, ,       n  ii2n3mi,ni3      n, m,    D2! D,,      + 

-1x13 (p - njm,)    D^ D,, - m^p - n2ni2)   Dy D2 > 

) 

At this point the new polarization coefficients result expressed as functions 

T 
of D-    and D-   only.    One could carry the analysis further and n-late them to tht 

j 1 

appropriate integrals of the distribution functions for the three constituents thus 

establishing the link between the present macroscopic approach and the statistical 

one.    We don't pursue this aspect any further since all the required passages 

and formulae are developed extensively in Reference   J,   { part I,   Chapter 7)   to 

which the reader is referred for details. 

5. CONCLUDING REMARKS 

The general expression for the polarization induced by Inhomogeneities 

has been herein derived.    Two   new "polarizability" coefficients n \   and az have 

been defined which art' a measure of these effects and which have  been expressed 

in terms of the thermodynamic  state equations of the plasma constituents and of 

binary transport coefficients. 

In the subsequent stage of the  research,   an order of magnitude analysis will 

be performed to determine both the absolute and relative importance of temperature 

and pressure gradients with respect to the induction of polarization in a plasma. 

This can be done by a judicious choice of     the values of the binary transport 

coefficients,   as they are presently available in the literature on the assumption 

that the constituent gasses obey perfect-gas state equations. 
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The present method of approach,   furthermore,   will be extended to 

include the following effects: 

i)       presence of an imposed magnetic field (i.e.   study of a plasma 

medium which is  both nonhomogeneous and anisotropic) 

ii)       plasma constituents not thermally in equilibrium ( i. e.   electron,   ion 

and neutral gasses with different temperatures) 

iii)      nonuniform convective motion of the plasma. 
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SYMBOLS - CHAPTER III 

mass concentration  of i component 

coefficient of thermal diffusion 

coefficient of binary molecular diffusion between the species i and j 

electric charge per unit mass of the i component 

external electric field 

Gibbs '  specific potential 

specific enthalpy 

mass flow of i component referred to the baricentcr of the mixture 

energy flow 

molar mass of the mixture 
« nij N. 

number density of the mixture  = 

N 
N 

number density of i component 

molar concentration of i component 

molar concentration of the mixture 

pressure 

polarization 

specific entropy 

temperature 

specific internal energy 

specific volume 

Qi.a^   new   polarizability coefficients 
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SYMBOLS ( Continued) 

( molar electric charge 

\ thermal conductivity coefficient 

|ji electrochemical potential 

p density 

6 electric potential 

u) angular wave frequency 

34 



I 
I 

1, 

CHAPTER IV 

PROPAGATION OF ELECTROMAGNETIC WAVES IN THE SHOCK TUBE 

INTRODUCTION 

The present part of the theoretical work on the propagation oi an 

electromagnetic field in a plasma is connected with the experimental program 

of measurement of the electrical properties of the plasma in the shock tube. 

The test  section of the  shock tube is used as a section of wave guide in 

which the phase velocity and the attenuation of the selected mode of propagation 

will be measured.     The propagation constant of the electromagnetic wave depends 

upon both the axial and radial distribution of the electric properties of the plasma. 

The axial gradient of electron density is controlled by the temperature distribution 

in the  driven   section of the shock tube.    On the other hand we may expect a radial 

nonuniform distribution in the electron density due to the growing thickness of the 

boundary layer behind the  shock wave.     The rate of increase of the boundary layer 

thickness corresponds to a small change of the radial distribution   inside a wavelength 

of the field distribution in the wave guide.     Consequently the effects of radial and 

axial nonuniform distributions can be analyzed independently,    .    . 

.     The local value    of the phase velocity along the    wave guide depends upon 

some average value of radial electron distribution.    This dependence must be 

analyzed in order to determine the error which may be introduced in the correlation 

of the experimental     results with a propagation model in which the  radial distribution 

is not taken into account. 
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In order to discuss this effect a theoretical analysis of the propagation 

properties is being conducted assuming a circular wave guide of radius r, in 

which the plasma is contained in a cylinder of radius  r,   <    r:.    The values of 

r,,    -    r,   are selected according to the expected thickness of the layer in whicli 

the electron density decays rapidly in the neighborhood of the wall.    The step 

function distribution is selected in order to obtain the maximum possible effect 

of the boundary layer on the axial propagation of the electromagnetic wave.    This 

problem is analyzed in Section  5 of this chapter.    In the final stage of the ex- 

perimental program we are planning to measure the propagation properties in 

the wave guide also with an axial constant and uniform magnetic field in the 

lest section of the shock tube.   These measurements will provide an additional 

set of data on the electromagnetic properties of the plasma.     For this reason 

a theoretical analysis is being conducted in  order to calculate the propagation 

properties and in particular to discuss the effect of the magnetic field on the 

lowest modes of propagation of the waveguide« containing the ionized gas.    The 

preliminary results of these calculations are contained in the last section of this 

chaple r. 

Z. BASIC EQUATIONS 

The   mathematical model of Maxwell equations together \>.ith an electron 

momentum equation is developed first in a general   way and then specialized to 

the specific problem treated.     The plasma is assumed to be defined by a constant 

plasma frequency and a constant collision  frequency.     The system of equations 

upon which the analysis is based is as follows: 
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V X E   =   - H (i; 

V  X H     =     « E - en w (2) 

m w   =     ••vmw-eE-jJiewXH ( J>) 

where E,   H,   are  respectively electric and mayiietic oscillatory lields and H0 

is the axial applied ( steady)   magnetic field,    w   is electron velocity,   V    is 

collision frequency,   m is electron mass,   ( -e)    is electron charge,   and c ,  ji 

are dielectric permeability and magnetic  permeability,   respectively,   for a 

vacuum.    The electrons are assumed to have significant collisions with neutral 

particles only,   and    v is the frequency for this type of collision. 

Under harmonic time-dependence e the equations become: 

V X   E   =     iw [i H 

V X H   =     -iw c   E 

(v- i w )   w = — E -  ^ w X H0 =-- E 
m m u      m 

w X i _ u) r, *      11 

(4) 

(5) 

(6) 

where (^ H 
(i .• H0 is ( electron)    gyro grequency and i      is the unit vector 

in the axial or z-direction. ^ 

It proves convenient to partition both vectors and ( curl)   operators 

|      components. into axial (   )      and transverse z 

Thus £     a        E >(' 

E      +     E s z 

and similarly with   H  . 
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The curl operator is partitioned in the following manner: 

VX 
8x ay 

)      () 

i j k 

+ 0 0 9 

(   ) (   ) (    ) 
v 

(8) 

VsX(   ) + VzX( 

where the partitioning is illustrated in Cartesian coordinates for simplicity, 

z still being    considered as axial. 

Applying this partitioning to the system (i )  ,   (5 ),( 6) ,   the following 

system results: 

V    X Ea    =   iw |xH, (9) 
SS ^ 

V      X Ez    t    V,  X  Es  =    i u; ,. H. 
s z 

Vs X I!,  =   -iw  € E    - enwz 

Vs X Hz +    vz X Hs =    -iu  «   Ks-enws 

v - i w )  wz = 
e 
m Ez 

(v - i«) ws =   --  Es   f   coHiz X w8 

10 

( 11 

( 12) 

13) 

( H) 

In the above system,   Equations (9)  ,   ( 11)  ,   ( 13)   are scalar single 

equations and ( 10)  ,   ( IZ)  ,   ( 14)    are  vector equation pairs  in    the ( x, y)    or 

( r,6)    plane.    The last equation ( 14)    can be solved for the two components, 

w    and w^,  of w    : 
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or 

where 

e 

m 

w      * T       E_ 
am 8 

(15) 

(16) 

■     V    -   IbJ 

\'UH V    -    1 C-. 

( 17) 

From { 14) 

w      -      ; ; r-     E., z m ( v - i ui ) z (18) 

Substituting from ( 1 6)   and ( 18)    into ( 11) ,   ( 1-)   for w   ,   \v   ,  there results 
/■ S 

e-n E 
V.   X II.   =   -   iw €   E     t     —; :— - ico «  E7 +  u ,;      --€.        E       ( 19! 

R E 

where 
e ^n 2 
      is(plasma frequency) 

V      X H    ^  V    X H   •- i u, e Efi +   w „ «   T       E s z /. s s P s 
( 10 

i 

i 

I 

i 

I 

! 

RE. 

/here the  scalar R and the matrix R are t^iven by 

r* CO _  6 
R   =    iL_ 

V    -   1 CO 

-    1   CJ « 

R i üj  €   I  +     w       «   T 
P 

with I representing the  Z X Z unit matrix. 
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Now solving formally,  ( 10)   lor H    and ( 20)   for Es>  we find 

II      B      —      (   V   X E_    +    V, X   E  ) 

Ea   =     R '    (   Vs X   Hz   +    Vz   X   H8 

(23) 

(24) 

The objective- here is to express the transverse fields,   Hg  ,   Kg entirely in terms 

of the axial components E   ,   H, .    This is accomplished by iubstituting ( 23)   into 
z        z 

( 24)   and ( 24)    into ( 23) 

V^XE,    ^   V.^ X (R'1 Vc X Hz +   R'     Vz X Hs)    ) Hs =   IT77   ( v -^ ' ■ 

:    f V    X H    +   -^       V    X (    V    X E    +   V   X E    )    ) 
\s zic„pz s z z =>/ E      =    R *    (  V    X H, + 

But it can be easilv shown that 

V   X   V,      X    E., 
z z s 

(25) 

(26) 

9 E. 

dz 

and V      X   (R  l V     X   H )     =     -R         1 
7- Z S 2 

dz 

(27) 

(28) 

In the cavity mode problem,   only the first axial harmonic is desired.    Thus, 

for the cavity problem the z-dependence of Ezand I^is given by 

so that 

E    r, ft )   sin —     z 
z z o 

TTZ 
H ( r, ft)   cos   — 

9 (  )     -_JLU   
) 

2 

(29) 

(30) 

(31) 

8z 

/here z    is the axial length of the cavity.    In the wavequide problem the 
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z-dependence of E   and ILis given by 

I 

E^(r,   6)   e 
i\ z 

Hz(r,  «)  e iVz 

(32) 

( 53) 

so that (34) 

Hence,   in what follows  92/dz    may be replaced by cither  -viz    or   -'\2 

and no confusion should result.    This,   together with (27)   and (^"8) 

permits solution of (25)   and (26)    for  E   ,   H    in terms of E   ,   H   . 

E 

(' 

-i 

ir R ■i \ 

z   1 CJ a 
o 

R   ' [ V    X H    +     r- — V     XV     X E^ 
s z IWfXZ s £ 

Vs X Ez +    vz X ( R   ' VSX H, ) 

/ 

(35) 

(36) 

This expresses E    and H    in the desired form. s s 

For convenience in subsequent expressions,  the following notation is 

introduced 

II"1        - (37) 

I   - 
z*  I« ^ 

/ 

Vv 

(3 8) 

Then,   if E    and H      from     ( 35)   and ( 56)   are substituted into (9)   and ( 19) , 

using the a ,   ß , V ,   6 notation of     ( 37)   and ( 38) ,  the following two coupled 

equations for H    (henceforth called simply H)    and Ez (called E)   are obtained: 



Rico 
\ r    8r      8r    / \        r /     dr \   Ö z ö r/ 

6      a2E yaj   6 ß        8 H 

r       a e 9z OB'1 39) 

1LJ   |J. H   +    (6a  -vß)   (-^   #-  (r-iiL))     V-i- 
r 

\ a  t-   6J     IJ 
i u/ [j.       I r 

d2H 

ae n 
a 

Or 9r clz 
L    C>

3
E ] 

,2       c/ZfJO2  1 

in.H 
Lfttin^ the S-dependence be given by e     '     in all cases,   and using the 

operator notation 

L        =    — —   ( r   )    -   111 r   c)r ar r2 

the equations ( 59)   and (4U)    reduce lo 

40 ) 

41) 

RrwuE+6L     E-.      -!-(^^^6(MLH=     0 m z ' '   '      in 
o 

(42) 

ic p   H +     ( 6a   -MM   L    H - —   {  l^J-M   )   LniE 0 (43) 

Eliminating H by cross operating on these equations,   we find 

aL       E+bLvE+cE=     0 
m m 44) 

/ith 

TT l^_^ilL     +     (   6a   -vß)       -^ 
IU p) 

45) 
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b   =     6  +   R  (  6 a   ■ -   v ß ) ( 46) 

c    =     R i a; |JL 7) 

This has the solutions J     ( rk! ) ,  J    ( rM ,   Y    ( rk, )  ,   Y    ( rk,) 
in ip. 

where 

+      \fh:-  - 4i ac 

\ 
(48) 

Incidentally,   H can be shown to satisfy the same   equation (44)   anH hence to 

have solutions composed of the  same functions. 

The combinations of n ,   ß,  \,   o required are as follows for the case 

of zero collision  frequency (   v ~    0 ) , 

2N 

a 
-    CJ ) 

P H 

P       II H     p 

w ,T - w 

I 

I! 
1          (JJ         Ui 

€ 1          HP 

• w 2 
OJ 

2       i       z.i z     4 

H    p 

/ 

I 
2 

i        IT   a 
"2  
Z      1 U/    LI. 
0 r -; 

A. -■ 'M 
\      o zhuv. V^1W^ 

y a    i     6 ß ' 
/ 2       \   ^   /   Za   \    Z / IT  a      \     ,    IT  3     \ 

\        Zjiw My    \  Z
0

1('MJ- 
/ 

4^ 

I 
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a   - P-1) 

( » a  *   v ß )     = i u [1 

(i - -*: 

üoi^ H. ,- zo lu; ^   / J 

Note that (3   and (^ a   +    6ß)   vanish with the magnetic field (i.e.   as u H —» 0 

I 
I 
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3.      PROPAGATION OF AN ELECTROMAGNETIC WAVE IN A CIRCULAR 

WAVEGUIDE WITH A PIECEWISE CONSTANT RADIAL ELECTRON 

DENSITY DISTRIBUTION 

Electron Density 

The sketch dhows the radial variation of electron density considered in the 

wave propagation analysis.    As noted earlier,   this is intended to simulate the 

rapid radial decay of electron density in the boundary layer.    For this problem, 

no externally applied steady magnetic field is considered.    The uncoupling realized 

in the cavity mode problem by the disappearance of applied magnetic field does 

not carry through to the present problem (except for »-independent waves) due 

to the radial nonuniformity of the plasma electron density. 

However,   with the disappearance of ^ ,   the matrices T,   R,   etc.,   degenerate 

to simple sealer quantities.    Thus 

R   becomes   e   / E 
v 
_£_   - iw ) 
v-im J 

I - 
*z  R 

2    . 
&0 

becomes I   - 1 
iwu« ( —E_  - ito) 

(50) 

(51) 
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I 
Hence 

ß ,   \   become zero 

and   6   becomes   — L 

1 

IW(1«(_JL   -iw) 
\v - iu        J 

< 
iu)(JL 

+   
V- i co 

< 
•»2 

-Y   + 
iu>|i £ «| 

<5Z) 

v - iw 

while   a 

becomes 

.V-lU) 
iu 

(53) 

In the above expressions (50)   through (53) the value of u *   is to be taken 

as w ^ in the plasma and zero in the vacuum annulus. 

With the vanishing of  »3 and y.   equations (4<i) and (43)uucouple,   and both 

E and H satisfy a reduced wave equation of the form 

u representing E or H. 

These have the  solutions 

(54) 

u=[Jm(i0r/r^i-ii) 

\ w2    +     v2 k 

(55) 

In the outer vacuum annulus,   both solutions (55) must be used (for both 

E and H) with Wp =  Q .    In the inner plasma-filled cylinder,   only the Z^ contribu-- 

tions apply,   from boundedness considerations.    This leaves three undetermined 

coefficients for each of E and H.    Correspondingly,   there are two boundary 

conditions: 

E(r2 ) = 0 

Vrj)"0 (56) 
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and   four interface or jump conditions at r = r, . 

W o 

o 

(57) 

In (57) the symbol     [  ]   means jump in a quantity across r = r, . 

The jump conditions (57) on E(e)   and H(Q)   require expression of these 

quantit.es in terms of F. and H.    From equations (35) and (36) and the scalar 

nature of R (50).   the expressions for E(9) and H{9)   can be written as follows: 

E(e) =  -6Q   i'i   f JL^     1     Ö2E 
cjr iu»»       r      dzdQ 

H 
(0) iwp     9r        iwji    r    a^8ö 

(58) 

(59) 

Now equations (58) and (59)  show that,   in the absence of 0-dependence,   the 

problem uncouples into TE and TM modes,   while the jump-condition require- 

ments (57) prevent this uncoupling in the presence of 6-dependence. 

The jump and boundary conditions now lead to the determinantal equation 

which relates propagation velocity 7.   to  wave frequency w.   and to the plasma 

frequency Wp and the configuration r, /r, .    After some algebraic manipulation 

this determinantal equation can be put in the following form:       'a 

^ - i ( ' X. ^^■"■^M^H (60) 
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where the parameters used are as follows; 

y   =   kbri 

x   =  ^r, 

z   =   kar2 

P = 
1 - 

c 

m i  iiiill 
y J

m ty> 
m     x 

Jm^) 
JmU) 
YmU) Yj(x) 

Jm^ Ym(») 
Y
mW 

Jm(x) 

■miz) 

Ym(x) Jm'i») 
Ym^) 

(61) 

< 

k2 kb 

k      -   V 

=    k^   -    Y +   1U>M£._. 
co (v-iw) 

=  k' ko   (# 

The equation (60)   constitutes a transcendental relation between U),U)_,V,Y', 

and the configuration (rj/r2).    This equation is currently being solved numerically 

on the GASL Bendix G-15 computer. 
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4.     RESONANT MODES IN PLASMA-FILLED CAVITY 

In this section,   the effect    of an external axial magnetic field is analyzed^ 

assuming a standing wave distribution of the electromagnetic wave inside the 

wave guide.    In this case,   we may study  the resonant modes of a plasma-filled 

cavity of length z0 and  radius r0,   under the externally applied magnetic field 

H0.    The minimum value of the length z0 of the cavity corresponds to half a 

wavelength of the standing wave inside the wave guide. 

The Y       solutions must be  ruled out from considerations of boundedness 

at the origin.    Thus,   for this problem,   E is given by 

i(-ujt + mO) 
E =     A JM1(r k») + B Jrn(r k,)J sin 'm 

irz 

-a 
c (62) 

The remaining two boundary conditions,   from which A and B (the mode shape) 

and the resonant frequencies are obtained are: 

and 

E (r0) =   0 

E^Uo)  =0 

(63) 

(64) 

The first,  (63),  follows simply from (6Z): 

A Jm   (rok1) + BJrn   (r0M=  0 (65) 

The  second,   (64).   requires the use of {lb) for E8,   which in t»rn requires a 

knowledge of H.    Using (4Z) and (43),   H xs expressible in terms of E and 

operators thereupon. 

When this process is carried out,   and when the vanishing of E itself  on 

the wall r = r0 is accounted for,   the second homogeneous equation on A and B 

becomes: 
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A' '^ * M' V- ETT   k'  J» ^ ^ * k. ^1%^) ('-^ i:Sli) 

+   B^ 

^ (66) 

Kquations (65)    and (66) provide the determinantal relation for <t nontrivial 

solution vector (A.B) from which the modal frequencies are computed.    It can 

easily be shown that,   for u^ =0 (zero applied magnetic field)    k,   and  k2   become 

equal,  invalidating the solution form (bl).    However,   examination of (4Z)   and 

(43),  (noting that ß and y vanish with wjj) shows that H and E decouple in this 

case,   permitting decomposition into the conventional TM (H= 0) and TE(E= 0) 

modes.    The natural modes and frequencies for this case (when v = 0) are classical 

provided w2 in the classical problem is replaced by (u)2 - ujp2 ).  That is 

'^1     \       =UJ/.2I .to)2 

(n) (n) classical        p 

.th 

(67) 

for the n      mode. 

The determinantal r. lation,   corresponding to equations (65) and (66) is 

currently being solved numerically in the GASE Bendix G-15 Computer.    At a 

set of values oi ^H,   Wp  and geometry r0/z0,   trial values of frequency w  are 

inserted until a zero-crossing is obtained for the value of the determinant, 
i 

Great care must be taken in the interpretation of the  solutions  so obtained,   since 

some formal solutions exist (vanishing of the determinant) which correspond to 

trivial fields.    Such is the case,   for example,   when either ^   or k,   vanishes; 

then it is possible to have a trivial field even though the vector (A,B) is nontrivial. 
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CHAPTER V 

EXPERIMENTAL FACILITY 

1. INTRODUCTION 

In this chapter we describe the facility which will be used for the 

measurement of the electromagnetic properties of a nonuniform plasma. 

The first  part contains a description of the shock tube and the results of 

calculations concerning the state of the test plasma.    The second part con- 

tains a description of the test section and the discussion of the electromagnetic 

measurements. 

2. THE SHOCK TUBE 

In studies such as the one presently under consideration,   where the 

thermodynanuc state of a slug of high purity gas must be accurately known, 

shock tubes have often been successfully employed ( References  1-3) .     The 

shock tube offers several unique advantages over other devices which produce 

high temperature flows.    Some of these advantages are:   1)   the state of the gas 

in the shock tube can be precisely determined from a knowledge of properties 

of the gas and the velocity of the shock as it traverses the tube;   thus it is not 

necessary to disturb the gas sample with probes in order to determine its state; 

2)   the purity of the test gas is controllable,   as it never makes contact with an 

electrode or any high temperature surface; and 3)   as long as the shock velocity 

and conditions ahead of the shock are uniform,   the gas sample produced will 

also be uniform,   since heat transfer to the tube walls is negligible during the 

short time involved in any test. 
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In the current study,   all the above-mentioned advantages o£ the shock 

tube arc needed.    Electron density and plasma frequency of air are strong 

functions of the thermodynamic  state and the impurity level of the sample, 

and both must be accurately known and controlled.    Uniform gas samples are 

needed for the calibration of the microwave equipment. 

As discussed in Section  3 of this chapter,   it was desired to construct 

a shock tube to produce a slug of hot air,  or plasma,   about    18 inches in length 

and 3 inches in diameter,   with equilibrium electron densities n    between  10 7 

and  10       electrons/cc,   i.e.   plasma frequencies vp   between  5 x  107 and 3 x 109 

C. p. s.     Both uniform and nonuniform electron density samples were required, 

with the nonuniform samples having a known axial electron density gradient. 

As a preliminary step in determining the shock tube needed for the study, 

the equilibrium electron density behind a shock was calculated for various shock 

Mach numbers    M( in air at room temperature and various pressures.    Since it 

was desired to avoid high pressures  in the test section to facilitate the microwave 

detector installation,   it was decided to design the experiment for an   initial pres- 

sure   p,   of 0.0 1  atmospheres.    This pressure level is easily   achieved,   and 

results in a maximum test section pressure (after shock reflection)   of 8. 5 

atmospheres.    The results of these electron density calculations,   based on data 

from References 4 and 5,   are shown in Figure  1. 

In order to produce a significant axial variation of electron density in the 

test gas,   it was thought necessary to create an axial temperature gradient behind 

the shock moving down the tube,   since electron density of a gas is primarily a 
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function of temperature.    The most convenient method of creating a temperature 

gradient behind the incident shock is by varying the temperature in front of the 

shock.    This will cause both the shock velocity and shock Mach number to 

change as the wave passes through the initial temperature gradient and,   by- 

careful selection of the initial shock Mach number,   initial temperature,   and 

initial temperature gradient,   it should be possible to produce the desired 

gradient behind the sliock. 

1      Uy means of a simplified analysis,   the results of various Mach number , 

temperature,   and temperature gradient combinations have been estimated,   and 

the most promising of these have then been accurately calculated by means of a 

real gas characteristics program for the Bendix G-15 computer. 

The simplified analysis is performed as follows:    We choose values of 

M_. ,   T,     and      AT,   or T.     (for meanings of svmbols,   see nomenclature list) . si        ii 1 'f 

We assume that hydrogen at room temperature is the driver gas,  and air at 

0.0 J  atm.   is the driven gas.    It is well known that the  diaphragm pressure 

ratio P4/P1    is a function of M   ,   a,   ,   and a,.     We can thus compute Pi/p.   for 

the a,  corresponding to Tj. ,   and for M    •    This same pressure ratio is then 

vised to compute   Ms . assuming a,   corresponds to T. ..     We now have two different 

shock Mach numbers which correspond to the two different initial temperatures 

at the ends of the initial temperature distribution.     By using References 4 and 5 

we can determine Tp ,   T?   ,   p? .,   r ■..,   and n_. and n„ . from these.    Although this 'l       *£'   "^ 1    r *f ej cj 

analysis docs not give details of the electron density gradient,   it does predict 

the maximum variation of electron density we can expect in the plasma behind 
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the incident shock.    When the   results of such an analysis were satisfactory, 

a detailed one-dimensional unsteady characteristics solution was obtained for 

the same values of Ms. ,  T j. ,  and Tj ..    The computer program was a modified 

version of the one described in Reference 6. 

The results of the preliminary analysis showed that a satisfactory 

gradient for a typical test i    se might be established by choosing Ms-   =    5,5, 

o > 
i,    =   4 3Ü   K,   and T,    =    30 0   K,   with p,   =   0.0 1  aim.     These numbers were 

i ' f ' 

then ted into the Bendix computer in a nondimensional form which specilied 

that the initial temperature in the driven lube decreased linearly with distance 

along the tube.    The length over which the temperature change occurred was 

arbitrary in the nondimensional coordinates , 

From the numerical solution of the problem it was found that the shock 

slows down as it traverses the region of decreasing initial temperature,   but the 

shock Mach number  increases due to the decreasing value of sound speed ahead 

of the shock.    The final shock Mach number was  6. „.    It  was also found that 

T2. =   .i57ü0K,  '!> . =   220 0oK, n.    =    1.5x10     and n     =    3. 1 x J 0    electrons/cc. 
^i Ai ■• i e£ 

For  reasons that will be discussed below,   it was thought convenient to 

make the driven tube   10  feet long,   with the lest section extending this  by several 

feet.    If we heat the lube as  shown in Figure Z,   with the initial temperature 

gradient coming between the  35-foot and 40-foot stations ,   and if we consider 

the instant when the  shock is 43.5 feet from the diaphragm stalion,   i.e.   5.5 

feet into the test section,   then the plasma temperature and electron density in 

the test section will be as shown in Figure 3.    It can be seen that the resulting 
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electron density gradient falls within the desired range of values. 

It should be noted that the above analysis,   while based on real gas 

computations,   does not take into account shock velocity nonuniformities due 

to such phenomena as  boundary layer growth and finite diaphragm opening time. 

Furthermore,   no accurate theory exists which can predict these nonuniformities. 

In an actual test,   we plan to avoid the problem of accurate prediction of shock 

velocity.    This will be done by measuring the shock velocity at eight stations along 

the tube.    These measurements,   along with a knowledge of the initial temperature 

distribution in the driven tube,   will permit an accurate calculation of the actual 

electron density gradient behind the shock.     The computer will perform these 

calculations. 

In order to correctly calculate electron density using velocity  measurement^, 

these measurements must be made with great precision.     Analysis has shown that 

the error in electron density is given by the following relation: 

d ne f  d tn n e I  duA       /a <nne x      p, 
T, ' 1    -' 

dT 

-M        yp ,     usy        VÖP/V/T   PO      V.Tl   / 

where dX/Xis defined as the per cent error  in the assumed value of X.     For our 

range of   interest ( T2 =   2200   -   3000ÜK)   this becomes: 

^dnA 
max 

v    "=/ 

/ du. 
5Z.8 

\ "s 
1      0 . 3 68 

/ dT A 
TV i ' 

Thus,   if we can measure us with 0 . 1% accuracy we will still have an error of more 

than 5% in electron density.    The error of a few degrees that we may make in Tj 
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will   have little effect on the error in n  ,    We plan to accomplish the velocity 

measurement by using eight pair of ionization probes distributed along the 

driven tube and test section.    Each pair of probes will constitute one velocity 

measuring station,  with the two probes about two feet apart.     The ionization 

behind the shock wave will trigger each probe in turn,   and the probes will act 

as shock time - of-arrival indicators.    Special circuits have been designed to 

measure and record the outputs with the required accuracy ( O.Z x 10        seconds) 

The primary factor which was used to fix the length of the shock tube was 

the length of the plasma slug required.    If ideal gas relations are used,   the 

This 
u..        1 

plasma length per unit length of driven tube is given by 1  -    -^:-    "TT 

will be reduced due to real gas effects and attenuation.    For 5. 5    <_   Ms   <_   6 

we   estimate real plasma lengths of about 0.0 8 feet per foot of driven tube. 

Now,  for our test we will require about  j. 5 feet of plasma,  and thus we have 

chosen to use a 4J - loot driven tube plus a test section about 4 feet long.    The 

driver is  10   feet long.    The entire shock tube,   including driver  section,   has a 

nominal inside diameter of three inches. 

The temperature distribution is obtained by winding insulated nichrome 

wire helically around the driven tube.    The wire is heated by passing current 

through it,   and is divided into  15 individually controlled sections which allow 

the establishment of any desired initial temperature distribution.    The entire 

driven tube is thermally insulated from the surrounding air and supporting stand. 

Heat from the tube wall will be conducted to the low-pressure air in the 

driven tube,   and the initial temperature distribution in the air should follow closely 

that of the tube wall.    Convection is not expected to play a major role in the transfer 

process. 
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Although it was originally thought that our tests would be performed 

in the GASL shock tunnel,  we soon realized that,  due to the moderate values of 

temperature and pressure required,   it would be more economical and convenient 

to construct a new shock tube with relatively thin walls.    Much less power is 

required to heat this new tube,   which is made of stainless steel pipe,  to the 

desired initial temperature distribution,   and the cost of building the tube is 

considerably less than that of extending the shock tunnel tube to a length of 40   feet. 

In the body of shock tube literature available no reference is to be found 

of any facility using this type of differential preheating of the driven gas. Thus 

we believe we have developed a unique and versatile research tool. 

From the values of shock Mach number and initial pressure to be used, 

we can calculate the hydrogen pressure needed in the driver.    This'is of the 

order of 10   atmospheres;   a nonmetallic diaphragm is used to contain this.    In 

order to control the shock Mach number    produced we will charge the driver and 

driven tubes to the desired pressures using a diaphragm which will not burst at 

these pressures.    Then a wire in contact with the diaphragm will be heated 

electrically,   and thus weaken the diaphragm material until it bursts.    The amount 

of heating required to produce a good burst should be small.    The diaphragm is 

thermally insulated from the heated driven tube by phenolic rings. 

In an attempt to estimate the effects of boundary layer on the flow in the 

shock tube,   the distance behind the shock at which transition occurs has been 

calculated.    Assuming a transition Reynolds number of 6 x 1 0     based on the 

distance a particle has moved after the shock has passed over it,   we found that 

transition occurs ^4 inches behind the shock in the test section.    Thus we will have 

about two feet of laminar boundary layer. 

57 



'i) 

I 
I 
I 
! 

I 
i 
I 

I 
I 
I 
I 
I 

The electron density profile in the laminar boundary layer has been 

computed,  using data from Reference 7 with the equilibrium value for plasma 

temperature.    The results of thi. caiculation ar^shown in Figure 4.    We see 

that a Mach 6 shock,  moving into air at 30 0oK and 0 . 0 1 atmospheres (approxi- 

mately the conditions existing in the test section) ,   produces a boundary layer in 

which,  two feet behind the shock,   the electron density has decreased  10% from 

free stream at 0. 18 inches from the tube wall.     We can define a core area, 

withm which the electron density is no more than 10% from its free stream value, 

and the ratio of core area to total area will vary as in Figure 5. 

In the course of our tests,   an antenna at the end of the test section will 

be radiating electromagnetic waves upstream,   through the oncoming shock,   and 

into the hot plasma behind the shock.    To prevent this radiation from continuing 

upstream,   reflecting off the end of the driver.   and coming   back downstream to 

interfere with the tests,   we have designed an electromagnetic   trap which,   when 

installed in the tube,   will transform the test section into an electromagnetic 

cavity.    This trap will consist of one or more metallic  ribbons stretched across 

the tube between the test section and the driven tube.    The ribbons will be 0 . 0 0 1 

inches thick with a chord of about 0 . 15 in ches,   and will be in tension   to prevent 

fluttering.    The flow in the test section is not expected to be affected,   since the 

ribbons will be several inches upstream of the region of interest. 
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3.      EXPERIMENTAL INVESTIGATION OF THE PLASMA PROPERTIES 

The preceding section discussed th<; aerodynamic requirements and 

properties of the GASL shock tube built for this experiment.    In this section, 

we discuss the experimental facility to determine the electromagnetic properties 

of a nonuniform plasma.    The use of a shock tube to generate a plasma is highly 

advantageous for the reasons previously mentioned.   However,   using the plasma 

region behind the shock wave imposes severe  requirements on the experimental 

technique tojneasure the i lectromagnetic properties of the ionized slug.    The 

primary difficulty is due to the short duration that the plasma  region is properly 

located in the electromagnetic test section.    For a uniform plasma such as that 

generated in a conventional shock tube,   the running times are on the order of 

100 p.sec. However,   for an axially nonunilorm plasma,   it is clear that the electro- 

magnetic properties are constantly changing while the slug is passing through 

the test section.    A number of interesting phenomena may occur as the slug 

enters the testing region.    Such phenomena may have very short transients. 

For these reasons,   it was deemed necessary that the detection system have a high 

time resolution ability. 

The second condition to be satisfied by the ionized gas is  given by the 

maximum value of the electron density at which the electromagnetic wave can 

propagate through the plasma.    A  suitable compromise between mechanical 

feasibility of the shock tube and a convenient frequency of the electromagnetic 

wave suggested a tube diameter of Z.94 inches.    This diameter is maintained 

for both the driven and test sections.    In the cylindrical wave guide corresponding 

to the test section,   the T Eu   mode was  selected for the electromagnetic wave. 
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This mode allows the use of a minimum frequency in the range of 3x10     cycles per sec. 

On the other hand,   this frequency is lower than the cut-off frequency of the 

T M0.  propagation mode.    The frequency of the electromagnetic wave determines 

the maximum value of the electron density in the ionized gas which corresponds 

to    approximately 10     electrons per cc. 

The minimum electron concentration is determined by the minimum detectable 

signal from the electromagnetic probes.    With the present technique,   it is 

7 
probable that the minimum detectable electron density   is     approximately 10 

electrons/cc. 

Since it is the purpose of this investigation to study the properties of non- 

uniform plasma,   the electron density in the extreme case should be rapidly 

changing in a distance comparable to one wavelength.    By establishing a tem- 

perature gradient in the tube as discussed in the previous section,   an electron 

gradient as strong as one order of magnitude every two wavelengths can be realized. 

Another difficulty in using the plasma generated behind the  shock wave is thai 

the electron density is not radially uniform.      This lack of uniformity leads to 

an average electron concentration which is  lower than the electron density at 

the axis of the tube.    Since the electrodynamic properties of the plasma can only 

be conveniently measured by considering the whole tube as a waveguide uniformly 

filled with a dielectric medium,   the radial plasma nonuniformity must be 

minimized.    Since the radial plasma nonuniformity is closely related to the 

aerodynamic boundary layer,   great care was taken in the design and construction 

of all parts of this facility to minimize the boundary layer growth as the shock 

wave proceeds down the tube.    The effect of the radial nonuniform plasma 
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distribution is being analyzed from a theoretical point of view as contained 

in Chapter III.    The alorementionod conditions determine the basic design 

considerations for this facility.    The major elements of this design are discussed 

be low. 

In Figure   7,   the end of the driven part of the shock tube is shown.    A 

microwave cavity is formed between the ribbon section and the tuning slug in 

I 
■ the antenna section.    The microwave power in the  range of 3 kilomegacycles 
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is fed to the antenna which is stretched across the tube approximately 1/4 

wavelength from the tuning slug.    The complete microwave system is outlined 

in block form in Figure  6. 

The detection assembly is located three wavelengths from the antenna 

section to avoid the effects of the attached field in the antenna region.    Ten 

i 

detectors are mounted at quarter wavelength intervals for the median waveguide 

wavelength.     Kach detector is a modified crystal with an individually-adjustable 

capacitive coupling.    The probe is mounted flush with the wall of the tube to 

minimize boundary layerr growth.    The coupling between a probe and the wave- 

guide must be kept at a minimum value to avoid a large perturbation of the field 

distribution in the waveguide. 

In order to record data from the detectors,   special ultra high gain amplifiers 

are needed.    Since it is desirable to observe the short transient effects as the 

shock passes,   these amplifiers were required to have a band pass of 7 megacycles. 

Since the data of each detector must be recorded independently,   it was deemed 

H best that individual oscilloscopes and cameras be employed for each detector. 

Since no commercially available scope with the desired band pass and sensitivity 

was available within reasonable cost,   the ten scope units were designed and 
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built by the GASL facility.    The instrument design incorporates a precision 

attenuator and a variable bandpass switch to accurately determine the short and 

medium drift in the microwave generator.    All of the scopes are driven with 

a common sweep and trigger source.    The specification on each scope is 

as follows: 

Deflection sensitivity-from    100 ^v/cm to I v/cm   in calibrated steps. 

Rise time -     .050 JJ. sec. 

Bandpass  -      l/Z to 7 mc adjustable. 

Noise  -    input open circuited -    Z0 |JLV RMS. 

-    input short circuited  -  10 |jiv RMS. 

It should be noted that each detector is AC coupled to the amplifiers so that 

only the change in microwave signal is display»^ on the scope. 

In Figure 8   a field diälribution is  shown typical of that encountered if the 

plasma has an axial gradient.    Note that the wavelength has  shifted and that the 

signal is partially attenuated. 

For comparison,   the field distriuutiun for the waveguide without plasma is 

superimposed.    The recorded data during the plasma flow will determine the 

instantaneous departure of the field distribution with respect to the stationary- 

distribution prior to each experiment.    This data is recorded on a continuous 

time basis during the running time of the tube.    Hence,   for each detector,   a 

history of the difference between the zero plasma case and the incident plasma 

is made.    By comparing the ten histories thus recorded,   the field distribution 

and hence the wavelength and attenuation can be determined for all times during 

the test.      A  particularly interesting situation may be found when the electron 
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density increases behind the  shock reaching the critical value which 

corresponds to a plasma frequency equal   to the angular frequency of the 

electromagnetic wave.    The position in the ionized layer of this critical 

density corresponds to the transition from the propagation region to a region 

of complete attenuation of the electromagnetic wave.    The passage of this 

transition plane by the position of a detector leads to a drastic change in the 

time-dependent signal obtained by the detector.    We point out that it is of 

major interest to analyze the correlation between the theoretical calculation 

and the experimental results across this transition region.    This is due to the 

fact that the position of this transition region in the plasma may be strongly 

affected by even a small departure of the actual electromagnetic properties 

of the plasma from the theoretical model. 

At the present date,   all of the mechanical work on the shock tube 

has been completed.    In addition,   all of the microwave equipment and the test 

section has been finished.    The" data recording system composed of the detec- 

tors,   scope amplifiers,   scopes and sweep source are complete except for 

calibration.     In like  manner,   the healing and control system for establishing 

a variable gradient  in the tube is finished.    The only remaining pretest work on the 

facility is principally a careful calibration of all components.    It is expected 

that preliminary test runs will be started shortly. 

I 
I 
I 
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SYMBOLS - CHAPTER V 

a speed of sound 

A tube cross section area 

M shock Mach number :   u   /aj 

n electron density 

p pressure 

T temperature 

AT!      l!.--   Tlf 

u 

X 

velocity 

any variable 

axial distance,   either from diaphragm or  behind shock 

normal distance from wall 

plasma frequency 

density 

Subscripts 
T i73. 16 K 

0 reference conditions    j ,ß 
vpj   =     1 atm,  p0 =   1.288x10      gm/cc/ 

1 initial conditions in driven tube 

I conditions in plasma behind shock wave 

4 initial conditions in driver tube 

i conditions at diaphragm end of region of interest 

f conditions at test section end of region of interest 

s pertaining to shock wave 
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